题目内容
已知函数f(x)=x2+2bx的图象在点A(0,f(0))处的切线L与直线x-y+3=0平行,若数列{
}的前n项和为Sn,则S2013的值为( )
| 1 |
| f(n) |
分析:求出函数的导数,由切线的斜率和导数几何意义求出b,求出f(x)代入
并进行裂项,代入S2013求值.
| 1 |
| f(n) |
解答:解:由题意得,f′(x)=2x+2b,
∵在点A(0,f(0))处的切线L与直线x-y+3=0平行,
∴f′(0)=2b=1,得b=
,
∴f(x)=x2+x,
则
=
=
=
-
,
∴S2013=(1-
)+(
-
)+…+(
-
)]
=1-
=
,
故选D.
∵在点A(0,f(0))处的切线L与直线x-y+3=0平行,
∴f′(0)=2b=1,得b=
| 1 |
| 2 |
∴f(x)=x2+x,
则
| 1 |
| f(n) |
| 1 |
| n2+n |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴S2013=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2013 |
| 1 |
| 2014 |
=1-
| 1 |
| 2014 |
| 2013 |
| 2014 |
故选D.
点评:本题考查了导数的几何意义,以及裂项相消法求数列的和,属于中档题.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|