题目内容
7、已知三条相交于一点的线段PA,PB,PC两两垂直,且A,B,C在同一平面内,P在平面ABC外,PH⊥平面ABC于H,则垂足H是△ABC的( )
分析:本题利用直接法解决.根据PA,PB,PC两两垂直得线面垂直,最后由线面垂直可证明线线垂直,得垂足H是△ABC的垂心.从而选出答案.
解答:解:
∵PH⊥平面ABC于H,
∴PH⊥BC,
又PA⊥平面PBC,
∴PA⊥BC,
∴BC⊥平面PAH,
∴BC⊥AH,即AH是三角形ABC的高线,
同理,BH、CH也是三角形ABC的高线,
∴垂足H是△ABC的垂心.
故选D.
∴PH⊥BC,
又PA⊥平面PBC,
∴PA⊥BC,
∴BC⊥平面PAH,
∴BC⊥AH,即AH是三角形ABC的高线,
同理,BH、CH也是三角形ABC的高线,
∴垂足H是△ABC的垂心.
故选D.
点评:本题主要考查了三角形五心,以及空间几何体的概念、空间想象力,属于基础题.
练习册系列答案
相关题目