题目内容
设函数f(x)=|x-4|+|x-a|,则f(x)的最小值为3,则求a的值.
(1)当a=4时,f(x)=2|x-4|,则f(x)的最小值为0,不成立.
(2)当a>4时:下面分类讨论x的值.
设f(x)=|x-4|+|x-a|
当x<4时,f(x)=-(x-4)-(x-a)=-2x+(a+4),故此时f(x)=2x+(a+4)>a-4.
当x>a,f(x)=(x-4)+(x-a)=2x-(a+4),故此时f(x)=2x-(a+4)>a-4.
当4≤x≤a,f(x)=(x-4)-(x-a)=a-4,故此时有-f(x)=a-4
综上所述f(x)=|x-4|+|x-a|的最小值为a-4,
故由已知得到a-4=3.即a=7.
同理可解(3)当a<4时候,a=1.
故答案为1和7.
(2)当a>4时:下面分类讨论x的值.
设f(x)=|x-4|+|x-a|
当x<4时,f(x)=-(x-4)-(x-a)=-2x+(a+4),故此时f(x)=2x+(a+4)>a-4.
当x>a,f(x)=(x-4)+(x-a)=2x-(a+4),故此时f(x)=2x-(a+4)>a-4.
当4≤x≤a,f(x)=(x-4)-(x-a)=a-4,故此时有-f(x)=a-4
综上所述f(x)=|x-4|+|x-a|的最小值为a-4,
故由已知得到a-4=3.即a=7.
同理可解(3)当a<4时候,a=1.
故答案为1和7.
练习册系列答案
相关题目
设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是( )
| A、[-5,5] | ||||||||
B、[-
| ||||||||
C、[-
| ||||||||
D、[-
|