题目内容
【题目】已知a∈R,函数f(x)=2x3﹣3(a+1)x2+6ax.
(1)若函数f(x)在x=3处取得极值,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若a>
,函数y=f(x)在[0,2a]上的最小值是﹣a2 , 求a的值.
【答案】
(1)解:∵f(x)=2x3﹣3(a+1)x2+6ax,
∴f′(x)=6x2﹣6(a+1)x+6a,
∵3是函数y=f(x)的极值点,
∴f′(3)=0,即6×32﹣6(a+1)×3+6a=0,
解得:a=3,
∴f(x)=2x3﹣12x2+18x,
f′(x)=6x2﹣24x+18,
则f(0)=0,f′(0)=18,
∴y=f(x)在(0,f(0))处的切线方程是:y=18x;
(2)解:由(1)得:f′(x)=6x2﹣6(a+1)x+6a,
∴f′(x)=6(x﹣1)(x﹣a),
①a=1时,f′(x)=6(x﹣1)2≥0,
∴f(x)min=f(0)=0≠﹣a2,
故a=1不合题意;
②a>1时,令f′(x)>0,则x>a或x<1,
令f′(x)<0,则1<x<a,
∴f(x)在[0,1]递增,在[1,a]递减,在[a,2a]递增,
∴f(x)在[0,2a]上的最小值是f(0)或f(a),
∵f(0)=0≠﹣a2,由f(a)=2a3﹣3(a+1)a2+6a2=﹣a2,
解得:a=4;
③
<a<1时,令f′(x)>0,则有x>1或x<a,
令f′(x)<0,则a<x<1,
∴f(x)在[0,a]递增,在[a,1]递减,在[1,2a]递增,
∴f(x)min=f(1)=2﹣3(a+1)+6a=﹣a2,
解得:a=
与
<a<1矛盾,
综上,符合题意的a的值是4
【解析】(1)求出函数的导数,根据3是函数y=f(x)的极值点,得到关于a的方程,解出a,求出f(x)的解析式,从而求出切线方程即可;(2)求出函数的导数,通过讨论a的范围,得到函数f(x)的最小值,求出对应的a的值即可.
【考点精析】解答此题的关键在于理解函数的最大(小)值与导数的相关知识,掌握求函数
在
上的最大值与最小值的步骤:(1)求函数
在
内的极值;(2)将函数
的各极值与端点处的函数值
,
比较,其中最大的是一个最大值,最小的是最小值.
【题目】为了解市民对某项政策的态度,随机抽取了男性市民25人,女性市民75人进行调查,得到以下的
列联表:
支持 | 不支持 | 合计 | |
男性 | 20 | 5 | 25 |
女性 | 40 | 35 | 75 |
合计 | 60 | 40 | 100 |
根据以上数据,能否有97.5%的把握认为市民“支持政策”与“性别”有关?
将上述调查所得的频率视为概率,现在从所有市民中,采用随机抽样的方法抽取4位市民进行长期跟踪调查,记被抽取的4位市民中持“支持”态度的人数为X,求X的分布列及数学期望。
附:
.
| 0.15 | 0.100 | 0.050 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |