题目内容

等差数列{an}中,,前n项和为Sn,S2=4且S4=12,等比数列{bn}的公比为8,且b3=64.
(Ⅰ)求an与bn
(Ⅱ)求
1
S1
+
1
S2
+…+
1
Sn
分析:(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q,根据题意建立方程,求得{an},{bn}的通项公式;
(Ⅱ)首先求出等差数列的前n项和{Sn}的表达式,进而求出
1
sn
,观察
1
sn
的形式,利用裂项求和法即可求得
1
S1
+
1
S2
+…+
1
Sn
解答:解:设等差数列{an}的公差为d,等比数列{bn}的公比为q,
(Ⅰ)由题意得:
S2=2a1+d=4
S4=4a1+6d=12

解得a1=
3
2
,d=1
an=n+
1
2

q=8
b3=64
,解得b1=1∴bn=8n-1
(Ⅱ)∵Sn=
n(n+2)
2

1
Sn
=
1
n
-
1
n+2

1
S1
+
1
S2
+…+
1
Sn
=(
1
1
-
1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)+…+(
1
n
-
1
n+2

=1+
1
2
-
1
n+1
-
1
n+2
=
3n2-13n
2(n+1)(n+2)
点评:本题主要考查数列求和和等差、等比数列求和公式的知识点,解答本题的关键是熟练掌握等差等比数列的性质,充分利用列项法求数列的和,本题难度一般.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网