题目内容
等差数列{an}中,,前n项和为Sn,S2=4且S4=12,等比数列{bn}的公比为8,且b3=64.(Ⅰ)求an与bn;
(Ⅱ)求
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
分析:(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q,根据题意建立方程,求得{an},{bn}的通项公式;
(Ⅱ)首先求出等差数列的前n项和{Sn}的表达式,进而求出
,观察
的形式,利用裂项求和法即可求得
+
+…+
.
(Ⅱ)首先求出等差数列的前n项和{Sn}的表达式,进而求出
| 1 |
| sn |
| 1 |
| sn |
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
解答:解:设等差数列{an}的公差为d,等比数列{bn}的公比为q,
(Ⅰ)由题意得:
,
解得a1=
,d=1
∴an=n+
,
,解得b1=1∴bn=8n-1;
(Ⅱ)∵Sn=
∴
=
-
∴
+
+…+
=(
-
)+(
-
)+(
-
)+…+(
-
)
=1+
-
-
=
.
(Ⅰ)由题意得:
|
解得a1=
| 3 |
| 2 |
∴an=n+
| 1 |
| 2 |
|
(Ⅱ)∵Sn=
| n(n+2) |
| 2 |
∴
| 1 |
| Sn |
| 1 |
| n |
| 1 |
| n+2 |
∴
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 1 |
| 1 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+2 |
=1+
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3n2-13n |
| 2(n+1)(n+2) |
点评:本题主要考查数列求和和等差、等比数列求和公式的知识点,解答本题的关键是熟练掌握等差等比数列的性质,充分利用列项法求数列的和,本题难度一般.
练习册系列答案
相关题目