题目内容
已知数列{an}为
,
+
,
+
+
,
+
+
+
,….若bn=
,则{bn}的前几项和Sn=( )
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 4 |
| 2 |
| 4 |
| 3 |
| 4 |
| 1 |
| 5 |
| 2 |
| 5 |
| 3 |
| 5 |
| 4 |
| 5 |
| 1 |
| an•an+2 |
分析:利用等差数列的前n项和公式即可得出an,利用“裂项求和”即可得出Sn.
解答:解:an=
=
=
.
∴bn=
=2(
-
).
∴Sn=2[(1-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]
=2(1+
-
-
)
=
.
故选A.
| 1+2+…+n |
| n+1 |
| ||
| n+1 |
| n |
| 2 |
∴bn=
| 1 | ||||
|
| 1 |
| n |
| 1 |
| n+2 |
∴Sn=2[(1-
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=2(1+
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3n2+5n |
| (n+1)(n+2) |
故选A.
点评:熟练掌握等差数列的前n项和公式、“裂项求和”等是解题的关键.
练习册系列答案
相关题目