题目内容
函数f(x)=sinx+cosx,设x∈[-
,
],若f2(x)≥a恒成立,则实数a的取值范围为
| π |
| 6 |
| π |
| 3 |
(-∞,1-
]
| ||
| 2 |
(-∞,1-
]
.
| ||
| 2 |
分析:化简函数f(x)=
sin(x+
),根据x∈[-
,
],利用正弦函数的定义域和值域求得
≤f(x)≤
.再由 f2(x)≥a恒成立,可得
(
)2=1-
≥a,由此求得实数a的取值范围.
| 2 |
| π |
| 4 |
| π |
| 6 |
| π |
| 3 |
| ||
| 2 |
| 2 |
(
| ||
| 2 |
| ||
| 2 |
解答:解:∵函数f(x)=sinx+cosx=
sin(x+
),设x∈[-
,
],则 x+
∈[
,
],故 sin
≤sin(x+
)≤sin
.
求得sin
=sin(
-
)=sin
cos
-cos
sin
=
,∴
≤sin(x+
)≤1,故
≤f(x)≤
.
再由 f2(x)≥a恒成立,可得 (
)2=1-
≥a,故实数a的取值范围为(-∞,1-
].
| 2 |
| π |
| 4 |
| π |
| 6 |
| π |
| 3 |
| π |
| 4 |
| π |
| 12 |
| 7π |
| 12 |
| π |
| 12 |
| π |
| 4 |
| π |
| 2 |
求得sin
| π |
| 12 |
| π |
| 3 |
| π |
| 4 |
| π |
| 3 |
| π |
| 4 |
| π |
| 3 |
| π |
| 4 |
| ||||
| 4 |
| ||||
| 4 |
| π |
| 4 |
| ||
| 2 |
| 2 |
再由 f2(x)≥a恒成立,可得 (
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
点评:本题主要考查两角和差的正弦公式,正弦函数的定义域和值域,函数的恒成立问题,属于中档题.
练习册系列答案
相关题目