题目内容

(2012•安徽)过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,若|AF|=3,则|BF|=
3
2
3
2
分析:设∠AFx=θ,θ∈(0,π)及|BF|=m,利用抛物线的定义直接求出m即|BF|的值.
解答:解:设∠AFx=θ,θ∈(0,π)及|BF|=m,
则点A到准线l:x=-1的距离为3.
得3=2+3cosθ?cosθ=
1
3
,又m=2+mcos(π-θ)?m=
2
1+cosθ
=
3
2

故答案为:
3
2
点评:本题考查抛物线的定义的应用,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网