题目内容
【题目】已知抛物线
:
的焦点
为圆
的圆心.
(1)求抛物线
的标准方程;
(2)若斜率
的直线
过抛物线的焦点
与抛物线相交于
两点,求弦长
.
【答案】(1)
;(2)8.
【解析】试题分析:(1)先求圆心得焦点,根据焦点得抛物线方程(2)先根据点斜式得直线方程,与抛物线联立方程组,利用韦达定理以及弦长公式得弦长
.
试题解析:(1)圆的标准方程为
,圆心坐标为
,
即焦点坐标为
,得到抛物线
的方程: ![]()
(2)直线
:
,联立
,得到![]()
弦长
![]()
【题型】解答题
【结束】
19
【题目】已知函数
在点
处的切线方程为
.
(1)求函数
的解析式;
(2)求函数
的单调区间和极值.
【答案】(1)
;(2)见解析.
【解析】试题分析:(1)根据导数几何意义得
,再与
联立方程组解得
,
(2)先函数导数,再求导函数零点,列表分析导函数符号变化规律,进而确定单调区间和极值
试题解析:(1)
,切线为
,即斜率
,纵坐标![]()
即
,
,解得
, ![]()
解析式![]()
(2)
,定义域为![]()
得到
在
单增,在
单减,在
单增
极大值
,极小值
.
练习册系列答案
相关题目