题目内容

14.若复数z满足|z-2i|=1(i为虚数单位),则|z|的最小值为1.

分析 设z=x+yi,(x,y∈R),根据|z-2i|=1,可得x2=1-(y-2)2(y∈[1,3]).代入|z|=$\sqrt{{x}^{2}+{y}^{2}}$,即可得出.

解答 解:设z=x+yi,(x,y∈R),
∵|z-2i|=1,
∴|x+(y-2)i|=1,
∴$\sqrt{{x}^{2}+(y-2)^{2}}$=1,∴x2=1-(y-2)2(y∈[1,3]).
则|z|=$\sqrt{{x}^{2}+{y}^{2}}$=$\sqrt{1-(y-2)^{2}+{y}^{2}}$=$\sqrt{4y-3}$≥$\sqrt{4-3}$=1.当y=1时取等号.
故答案为:1.

点评 本题考查了复数的运算法则、模的计算公式、一次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网