题目内容
(Ⅰ)已知数列{an}满足a1=1,an+1=an+2n(n=1,2,3…),{bn}满足b1=1,bn+1=bn+
| ||
| n |
| 1 |
| 2 |
| n |
| k=1 |
| 1 | ||
|
(Ⅱ)已知数列{an}满足:a1=1且2an-3an-1=
| 1 |
| 2n-2 |
| 1 |
| 2n |
| 1 |
| m |
| m2-1 |
| m |
分析:(I)记In=
,则I1=
<I2<<In.而In=
≤
.从而有
=
=1-
<1.由bk+1=bk+
=
,知
=
=
-
,从而有
=
-
≤
=1.所以
≤
<1.
(II)设an+
=
(an-1+
)(n≤2),an=
an-1+
与an=
an-1+
比较系数得c=1.由此入手能够证明(an+
)^
(m-n+1)≤
.
| n |
| k=1 |
| 1 | ||
|
| 1 |
| 2 |
| n |
| k=1 |
| 1 | ||
|
|
| n |
| k=1 |
| 1 |
| ak+1-1 |
| n |
| k=1 |
| 1 |
| k(k+1) |
| 1 |
| n+1 |
| ||
| k |
| bk(bk+k) |
| k |
| 1 |
| bk+1 |
| k |
| bk(bk+k) |
| 1 |
| bk |
| 1 |
| bk+k |
| n |
| k=1 |
| 1 |
| bk+k |
| 1 |
| b1 |
| 1 |
| bn+1 |
| 1 |
| b1 |
| 1 |
| 2 |
| n |
| k=1 |
| 1 | ||
|
(II)设an+
| x |
| 2n |
| 3 |
| 2 |
| x |
| 2n-1 |
| 3 |
| 2 |
| c |
| 2n-1 |
| 3 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| m |
| m2-1 |
| m |
解答:解:(I)证明:记In=
,则I1=
<I2<<In.(2分)
而In=
≤
.(4分)
因为a1=1,an+1=an+2n,所以ak+1-1=k(k+1).(5分)
从而有
=
=1-
<1.①
又因为bk+1=bk+
=
,所以
=
=
-
,
即
=
-
.从而有
=
-
≤
=1.②(6分)
由(1)和(2)即得In<1.综合得到
≤In<1.
左边不等式的等号成立当且仅当n=1时成立.(7分)
(II)不妨设an+
=
(an-1+
)(n≤2)即an=
an-1+
与an=
an-1+
比较系数得c=1.
即an+
=(
)nan+
=
(an-1+
)
又a1+
=
,故{an+
}是首项为
公比为
的等比数列,
故an=(
)n-
(10分)
这一问是数列、二项式定理及不等式证明的综合问题.综合性较强.
即证(
)
(m-n+1)≤
,当m=n时显然成立.易验证当且仅当m=n=2时,等号成立.
设bn=(
)
(m-n+1)下面先研究其单调性.当m>n时,
(12分)
即数列{bn}是递减数列.因为n≥2,故只须证b2≤
,即证(
)
≤
.事实上,(
)m>1+Cm^ •
+Cm2•
=
-
>
故上不等式成立.综上,原不等式成立.
| n |
| k=1 |
| 1 | ||
|
| 1 |
| 2 |
而In=
| n |
| k=1 |
| 1 | ||
|
|
因为a1=1,an+1=an+2n,所以ak+1-1=k(k+1).(5分)
从而有
| n |
| k=1 |
| 1 |
| ak+1-1 |
| n |
| k=1 |
| 1 |
| k(k+1) |
| 1 |
| n+1 |
又因为bk+1=bk+
| ||
| k |
| bk(bk+k) |
| k |
| 1 |
| bk+1 |
| k |
| bk(bk+k) |
| 1 |
| bk |
| 1 |
| bk+k |
即
| 1 |
| bk+k |
| 1 |
| bk |
| 1 |
| bk+1 |
| n |
| k=1 |
| 1 |
| bk+k |
| 1 |
| b1 |
| 1 |
| bn+1 |
| 1 |
| b1 |
由(1)和(2)即得In<1.综合得到
| 1 |
| 2 |
左边不等式的等号成立当且仅当n=1时成立.(7分)
(II)不妨设an+
| x |
| 2n |
| 3 |
| 2 |
| x |
| 2n-1 |
| 3 |
| 2 |
| c |
| 2n-1 |
| 3 |
| 2 |
| 1 |
| 2n-1 |
即an+
| 1 |
| 2n |
| 3 |
| 2 |
| 1 |
| 2n |
| 3 |
| 2 |
| 1 |
| 2n-1 |
又a1+
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2n |
| 3 |
| 2 |
| 3 |
| 2 |
故an=(
| 3 |
| 2 |
| 1 |
| 2n |
这一问是数列、二项式定理及不等式证明的综合问题.综合性较强.
即证(
| 3 |
| 2 |
| n |
| m |
| m2-1 |
| m |
设bn=(
| 3 |
| 2 |
| n |
| m |
|
即数列{bn}是递减数列.因为n≥2,故只须证b2≤
| m2-1 |
| m |
| 3 |
| 2 |
| 2 |
| m |
| m+1 |
| m |
| m+1 |
| m |
| 1 |
| m |
| 1 |
| m2 |
| 5 |
| 2 |
| 1 |
| 2m |
| 9 |
| 4 |
点评:本题考查数列的性质和综合运用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目