题目内容

已知数列{an}中,a1=t(t≠0,且t≠1),a2=t2,且当x=t时,函数f(x)= (an-an-1)x2-(an+1-an)x(n≥2)取得极值.

(1)求证:数列{an+1-an}是等比数列.

(2)若bn=anln|an|(nN*),求数列{bn}的前n项和Sn.

(3)当t=-时,数列{bn}中是否存在最大项?如果存在,说明是第几项;如果不存在,请说明理由.

(1)证明:由f′(t)=0,得(an-an-1)t=an+1-an(n≥2).?

a2-a1=t2-t=t(t-1),?

∵t≠0且t≠1,∴a2-a1≠0.?

=t.

∴数列{an+1-an}是首项为t2-t,公比为t的等比数列.                                               ?

(2)解:由(1)知an+1-an=(t2-t)tn-1(t≠1且t≠0),

即an+1-an=tn+1-tn,?

∴an-an-1=tn-tn-1,?

an-1-an-2=tn-1-tn-2,?

……?

a2-a1=t2-t,?

上面n-1个等式相加并整理得?

an=tn(T≠0且T=1),                                                                                                 ?

bn=anlg|an|=tn·lg|tn|=ntnlg|t|,?

Sn=(t+2·t2+3·t3+…+n·tn)lg|t|,?

tSn=[t2+2·t3+…+(n-1)tn+ntn+1]lg|t|?,?

两式相减,(1-t)Sn=(t+t2+…+tn-ntn+1)g|t|?,

整理得Sn=[-]lg|t|.                                                                 ?

(3)解:因为t=-,即-1<t<0,所以?              

n为偶数时,bn=ntnlg|t|<0,?

n为奇数时,bn=ntnlg|t|>0,?

所以最大项必为奇数项,?

设最大项为b2k+1,则有

整理得                                                                                   ?

t2=代入上式,解得k.?

kN*,?

k=2,即数列{bn}中的最大项是第5项.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网