题目内容

(1)已知数列,其中,且数列为等比数列,求常数p

(2)设是公比不相等的两个等比数列,,证明:数列不是等比数列.

解:(1)解:因为{cn1pcn}是等比数列,

故有:(cn1pcn2=(cn2pcn1)(cnpcn1),将cn=2n+3n代入上式,得:

[2n1+3n1p(2n+3n)]2=[2n2+3n2p(2n1+3n1)]·[2n+3np(2n1+3n1)],

即[(2-p)2n+(3-p)3n2

=[(2-p)2n1+(3-p)3n1][(2-p)2n1+(3-p)3n1],

整理得(2-p)(3-p)·2n·3n=0,解得p=2或p=3.

(2)证明:设{an}、{bn}的公比分别为pqpqcn=an+bn.

为证{cn}不是等比数列只需证c22c1·c3.

事实上,c22=(a1pb1q2a12p2b12q2+2a1b1pq

c1·c3=(a1b1)(a1p2b1q2)=a12p2b12q2a1b1p2q2),

由于pqp2q2>2pq,又a1b1不为零,因此c22c1·c3,故{cn}不是等比数列.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网