题目内容
6.已知三个点A(0,0),B(2,0),C(4,2),则△ABC的外心的纵坐标是3.分析 设△ABC外接圆方程为x2+y2+Dx+Ey+F=0,由点A(0,0),B(2,0),C(4,2),列出方程组,能求出△ABC的外心的纵坐标.
解答 解:设△ABC外接圆方程为x2+y2+Dx+Ey+F=0,
∵点A(0,0),B(2,0),C(4,2),
∴$\left\{\begin{array}{l}{F=0}\\{4+2D+F=0}\\{20+4D+2E+F=0}\end{array}\right.$,
解得D=-2,E=-6,F=0,
∴△ABC外接圆方程为x2+y2-2x-6y=0.
∴△ABC外接圆的圆心为(1,3),
∴△ABC的外心的纵坐标是3.
故答案为:3.
点评 本题考查三角形外心纵坐标的求法,是基础题,解题时要认真审题,注意待定系数法的合理运用.
练习册系列答案
相关题目
11.过点A(0,3),B(7,0)的直线l1与过点C(2,1),D(3,k+1)的直线l2互相垂直,则实数k的值为( )
| A. | $\frac{3}{7}$ | B. | -$\frac{3}{7}$ | C. | -$\frac{7}{3}$ | D. | $\frac{7}{3}$ |