题目内容
已知数列{an}中,a1=3,an+1=2an-1(n≥1).
(Ⅰ)设bn=an-1(n=1,2,3,…),求证:数列{bn}是等比数列;
(Ⅱ)设cn=
,求证:数列{cn}的前n项和Sn<
.
(Ⅰ)设bn=an-1(n=1,2,3,…),求证:数列{bn}是等比数列;
(Ⅱ)设cn=
| 2n |
| an• an+1 |
| 1 |
| 3 |
证明:(Ⅰ)∵an+1=2an-1,∴an+1-1=2(an-1)
∵bn=an-1,∴bn+1=2bn,
∵a1=3,∴b1=a1-1=2≠0,∴数列{bn}是等比数列
(Ⅱ)由(Ⅰ)bn=2n,∴an=2n+1
∴cn=
=
-
∴Tn=(
-
)+(
-
)+…+(
-
)=
-
<
∵bn=an-1,∴bn+1=2bn,
∵a1=3,∴b1=a1-1=2≠0,∴数列{bn}是等比数列
(Ⅱ)由(Ⅰ)bn=2n,∴an=2n+1
∴cn=
| 2n |
| an•an+1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1+1 |
∴Tn=(
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 9 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1+1 |
| 1 |
| 3 |
| 1 |
| 2n+1+1 |
| 1 |
| 3 |
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|