题目内容

平面内有n条直线,其中无任何两条平行,也无任何三条共点,求证:这n条直线把平面分割成
1
2
(n2+n+2)块.
证明:(1)当n=1时,1条直线把平面分成2块,又
1
2
(12+1+2)=2,命题成立.
(2)假设n=k时,k≥1命题成立,即k条满足题设的直线把平面分成
1
2
(k2+k+2)块,
那么当n=k+1时,第k+1条直线被k条直线分成k+1段,
每段把它们所在的平面块又分成了2块,因此,增加了k+1个平面块.
所以k+1条直线把平面分成了
1
2
(k2+k+2)+k+1=
1
2
[(k+1)2+(k+1)+2]块,
这说明当n=k+1时,命题也成立.
由(1)(2)知,对一切n∈N*,命题都成立.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网