题目内容
数列{an}满足a1=2,an+1=an2+6an+6(n∈N*).(1)cn=log5(an+3),求证:{cn}是等比数列;
(2)求数列{an}的通项公式;
(3)设bn=
,数列{bn}的前n项和为Tn,求证:
≤Tn<
.
解:(1)∵an+1+3=an2+6an+9=(an+3)2,
∴log5(an+1+3)=2log5(an+3),
即cn+1=2cn,
=2,{cn}是等比数列(n∈N*).
(2)c1=log5(2+3)=1,cn=c1qn-1=1×2n-1=2n-1,
log5(an+3)=2n-1,an=
-3(n∈N*).
(3)证明:bn=
,
Tn=
+
+…+
=
.
Tn=
=
=
,
{Tn}单调递增,因此{Tn}min=T1=
=
,Tn<
,
即
≤Tn<
.
练习册系列答案
相关题目