题目内容
【题目】设函数f(x)=Asin(ωx+)(A,ω,为常数,且A>0,ω>0,0<<π)的部分图象如图所示. ![]()
(1)求A,ω,的值;
(2)当x∈[0,
]时,求f(x)的取值范围.
【答案】
(1)解:根据函数f(x)=Asin(ωx+)(A,ω,为常数,且A>0,ω>0,0<<π)的部分图象,
可得A=
,
=
﹣
=
,∴ω=2.
再根据五点法作图,可得2
+φ=π,∴φ=
,f(x)=
sin(2x+
)
(2)解:当x∈[0,
]时,2x+
∈[
],sin(2x+
)∈[﹣
1],
∴f(x)∈[﹣
,
]
【解析】(1)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(2)利用正弦函数的定义域和值域,求得当x∈[0,
]时,求f(x)的取值范围.
练习册系列答案
相关题目