题目内容

7.已知在△ABC中,∠C=90°,M是边BC的中点,AC=1.若sinB=$\frac{1}{3}$,则AM=$\sqrt{3}$.

分析 由已知sinB=$\frac{1}{3}$,可求AB,利用勾股定理可求BC的值,进而可求MC,利用勾股定理即可解得AM的值.

解答 解:∵∠C=90°,AC=1.sinB=$\frac{1}{3}$=$\frac{AC}{AB}$=$\frac{1}{AB}$,
∴AB=3,
∴BC=$\sqrt{A{B}^{2}-A{C}^{2}}$=$\sqrt{{3}^{2}-{1}^{2}}$=2$\sqrt{2}$,
∵M是边BC的中点,
∴MC=$\sqrt{2}$,
∴AM=$\sqrt{A{C}^{2}+C{M}^{2}}$=$\sqrt{{1}^{2}+(\sqrt{2})^{2}}$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题主要考查了勾股定理,三角函数的定义在解三角形中的应用,考查了数形结合思想和转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网