题目内容
函数f(x)=sin2x-4sin3xcosx(x∈R)的最小正周期为( )
A.
| B.
| C.
| D.π |
∵f(x)=sin2x-4sin3xcosx
=sin2x-sin2x•2sin2x
=sin2x(1-2sin2x)
=sin2x•cos2x
=
sin4x
故T=
=
故选C
=sin2x-sin2x•2sin2x
=sin2x(1-2sin2x)
=sin2x•cos2x
=
| 1 |
| 2 |
故T=
| 2π |
| 4 |
| π |
| 2 |
故选C
练习册系列答案
相关题目