题目内容
在平面直角坐标系中,
的两个顶点
、
的坐标分别是(-1,0),(1,0),点
是
的重心,
轴上一点
满足
,且
.
(1)求
的顶点
的轨迹
的方程;
(2)不过点
的直线
与轨迹
交于不同的两点
、
,当
时,求
与
的关系,并证明直线
过定点.
(1)求
(2)不过点
(1)
(2)
,直线过定点
试题分析:(1)设点
因为
由点
因为
故
(2)设直线
由
则
且
因为
故
整理得
①当
②当
综上所述
点评:求曲线方程时,不要忘记验证是否有限制条件;解决直线与圆锥曲线的位置关系时,一般离不开直线方程与圆锥曲线方程联立方程组,此时不要忘记验证判别式大于零.
练习册系列答案
相关题目