题目内容

设函数f(x)=sin(2ωx-
π
6
)+
1
2
,x∈R
,又f(α)=-
1
2
,f(β)=
1
2
,且|α-β|
最小值为
4
,则正数ω的值为(  )
分析:先利用f(α)=-
1
2
,f(β)=
1
2
,求得2ωα-
π
6
和2ωβ-
π
6
,进而二者相减求得2ωα-2ωβ 的表达式,进而根据|α-β|的最小值为
4
代入,根据ω为正整数,则可取k1=k2=1,求得答案.
解答:解:因为f(x)=sin(2ωx-
π
6
)+
1
2

f(α)=-
1
2

∴sin(2ωα-
π
6
)=-1;
∴2ωα-
π
6
=(2k1+1)
π
2

∵f(β)=
1
2

∴sin(2ωα-
π
6
)=0;
∴2ωα-
π
6
=k2π;
∴2ωα-2ωβ=(k1-k2)π+
π
2

∴2ω•|α-β|=(k1-k2) π+
π
2

∵|α-β|≥
4
,则
∴2ω≤
4
[(k1-k2)π+
π
2
]=
1
3
[4(k1-k2)+2]
ω≤
1
3
[2(k1-k2)+1]
取k1=k2=1,
则可知ω=
1
3

故选A.
点评:本题主要考查了两角和公式和二倍角公式的化简求值.考查了学生综合分析问题和基本的运算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网