题目内容
设{an}是正项等比数列,令Sn=lga1+lga2+…+lgan,n∈N*,若存在互异的正整数m,n,使得Sm=Sn,则Sm+n=______.
∵{an}是正项等比数列,设公比为q,
∴lgan+1-lgan=lgq
∴数列{lgan}为等差数列,
设公差为d
则Sm=mlga1+
,Sn=nlga1+
∵Sm=Sn,
∴Sm-Sn=mlga1+
-nlga1-
=(m-n)(lga1+
d)=0
∵m≠n
∴lga1+
d)=0
∴Sm+n=(m+n)lga1+
=(m+n)(lga1+
d)=0
故答案为0.
∴lgan+1-lgan=lgq
∴数列{lgan}为等差数列,
设公差为d
则Sm=mlga1+
| m(m-1)d |
| 2 |
| n(n-1)d |
| 2 |
∵Sm=Sn,
∴Sm-Sn=mlga1+
| m(m-1)d |
| 2 |
| n(n-1)d |
| 2 |
| m+n-1 |
| 2 |
∵m≠n
∴lga1+
| m+n-1 |
| 2 |
∴Sm+n=(m+n)lga1+
| (m+n)(m+n-1)d |
| 2 |
| m+n-1 |
| 2 |
故答案为0.
练习册系列答案
相关题目