题目内容
点P是△ABC内一点且满足4
+3
+2
=
,则△PBC,△PAC,△PAB的面积比为( )
| PA |
| PB |
| PC |
| 0 |
| A、4:3:2 |
| B、2:3:4 |
| C、1:1:1 |
| D、3:4:6 |
分析:如图所示,过点C作CD∥PA交BP的延长线于点D,AC与PD交于点E.由于4
+3
+2
=
,可得2
+
+
=
.得到
=2
,
=
.利用相似三角形的性质可得
=
=
,同理
=
.即可得出.
| PA |
| PB |
| PC |
| 0 |
| PA |
| 3 |
| 2 |
| PB |
| PC |
| 0 |
| CD |
| PA |
| PD |
| 3 |
| 2 |
| AP |
| S△PAB |
| S△PBC |
|
| ||
|
|
| 1 |
| 2 |
| S△PAB |
| S△PAC |
| 2 |
| 3 |
解答:解:如图所示,
过点C作CD∥PA交BP的延长线于点D,AC与PD交于点E.
∵4
+3
+2
=
,∴2
+
+
=
.
∴
=2
,
=
.
∴
=
=
,同理
=
.
∴S△PBC:S△PAC:S△PAB=4:3:2.
故选:A.
过点C作CD∥PA交BP的延长线于点D,AC与PD交于点E.
∵4
| PA |
| PB |
| PC |
| 0 |
| PA |
| 3 |
| 2 |
| PB |
| PC |
| 0 |
∴
| CD |
| PA |
| PD |
| 3 |
| 2 |
| BP |
∴
| S△PAB |
| S△PBC |
|
| ||
|
|
| 1 |
| 2 |
| S△PAB |
| S△PAC |
| 2 |
| 3 |
∴S△PBC:S△PAC:S△PAB=4:3:2.
故选:A.
点评:本题考查了向量的三角形法则、共线定理、相似三角形的性质,属于难题.
练习册系列答案
相关题目
点P是△ABC内一点,且
=
+
,则△ABP的面积与△ABC的面积之比是( )
| AP |
| 2 |
| 5 |
| AB |
| 1 |
| 5 |
| AC |
| A、1:5 | B、2:5 |
| C、1:2 | D、2:1 |