搜索
题目内容
函数y=
-x(
≤x≤1)的值域为______________.
试题答案
相关练习册答案
[1,
]
解析:函数y=
-x在区间[
,1]上单调递减,∴y
max
=
=
,y
min
=
-1=1,即值域为[1,
].
练习册系列答案
课时总动员系列答案
期末赢家系列答案
天天向上提分金卷系列答案
新思路辅导与训练系列答案
说明与检测系列答案
全程优选测试卷系列答案
沸腾英语系列答案
考点同步解读系列答案
同步导学创新学习系列答案
学习总动员单元复习专项复习期末复习系列答案
相关题目
设函数f(x)=a
2
x
2
(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)
2
>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设
a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
对于函数y=f(x)(x∈R),给出下列命题:
(1)在同一直角坐标系中,函数y=f(1-x)与y=f(x-1)的图象关于直线x=0对称;
(2)若f(1-x)=f(x-1),则函数y=f(x)的图象关于直线x=1对称;
(3)若f(1+x)=f(x-1),则函数y=f(x)是周期函数;
(4)若f(1-x)=-f(x-1),则函数y=f(x)的图象关于点(0,0)对称.
其中所有正确命题的序号是
(3)(4)
(3)(4)
.
给出下列四个命题:
①函数y=|x|与函数
y=(
x
)
2
表示同一个函数;
②已知函数f(x+1)=x
2
,则f(e)=e
2
-1
③已知函数f(x)=4x
2
+kx+8在区间[5,20]上具有单调性,则实数k的取值范围是(-∞,40]∪[160,+∞)
④已知f(x)、g(x)是定义在R上的两个函数,对任意x、y∈R满足关系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0时f(x)•g(x)≠0则函数f(x)、g(x)都是奇函数.
其中正确命题的个数是( )
A.1个
B.2个
C.3个
D.0个
(2012•浦东新区三模)已知函数y=f(x),x∈D,y∈A;g(x)=x
2
-(4
7
tanθ)x+1,
(1)当f(x)=sin(x+φ)为偶函数时,求φ的值.
(2)当f(x)=sin(2x+
π
6
)+
3
sin(2x+
π
3
)时,g(x)在A上是单调递减函数,求θ的取值范围.
(3)当f(x)=m•sin(ωx+φ
1
)时,(其中m∈R且m≠0,ω>0),函数f(x)的图象关于点(
π
2
,0)对称,又关于直线x=π成轴对称,试探讨ω应该满足的条件.
设函数f(x)=a
2
x
2
(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
2
,求a的值;
(2)关于x的不等式(x-1)
2
>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设
a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案