题目内容

(2013•黑龙江二模)选修4-1:几何证明选讲
如图,点C是⊙O直径BE的延长线上一点,AC是⊙O的切线,A为切点,∠ACB的平分线CD与AB相交于点D,与AE相交于点F,
(Ⅰ)求∠ADF的值
(Ⅱ)若AB=AC,求
ACBC
的值.
分析:(I)利用切线的性质和角平分线的性质可得∠ADF=∠AFD.再利用BE是⊙O直径,可得∠BAE=90°.即可得到∠ADF=45°.
(II)利用等边对等角∠B=∠ACB=∠EAC.由(I)得∠BAE=90°,∠B+∠AEB=∠B+∠ACE+∠EAC=3∠B=90°,即可得到∠B=30°.
进而得到△ACE∽△BCA,于是
AC
BC
=
AE
AB
=tan30°.
解答:解:(I)∵AC是⊙O的切线,∴∠B=∠EAC.
又∵DC是∠ACB的平分线,∴∠ACD=∠DCB,
∴∠B+∠DCB=∠EAC+∠ACD,∴∠ADF=∠AFD.
∵BE是⊙O直径,∴∠BAE=90°.
∴∠ADF=45°.
(II)∵AB=AC,∴∠B=∠ACB=∠EAC.
由(I)得∠BAE=90°,∴∠B+∠AEB=∠B+∠ACE+∠EAC=3∠B=90°,
∴∠B=30°.
∵∠B=∠EAC,∠ACB=∠ACB,
∴△ACE∽△BCA,
AC
BC
=
AE
AB
=tan30°=
3
3
点评:熟练掌握圆的性质、切线的性质和角平分线的性质、弦切角定理、相似三角形的性质等是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网