题目内容
已知函数A.
B.5
C.7
D.13
【答案】分析:利用两角和的正弦函数直接化简f(x)为一个角的一个三角函数的形式,即可求出函数的振幅.
解答:解:函数f(x)=f1(x)+f2(x)
=
=3sin2xcos
-3cos2xsin
+4sin2xcos
+4cos2xsin
=7sin2xcos
+cos2xsin
=
sin2x+
cos2x
=
sin(2x+θ).其中tanθ=
.
所以函数的振幅为
.
故选A.
点评:本题考查两角和的正弦函数的应用,三角函数的恒等变形,考查计算能力.
解答:解:函数f(x)=f1(x)+f2(x)
=
=3sin2xcos
=7sin2xcos
=
=
所以函数的振幅为
故选A.
点评:本题考查两角和的正弦函数的应用,三角函数的恒等变形,考查计算能力.
练习册系列答案
相关题目