题目内容
在△ABC中,
,
,且
的夹角是![]()
(1)求角C;
(2)已知
,三角形ABC的面积
,求a+b.
(1)
(2)
.
解析试题分析:(1)由向量
的坐标根据向量模公式计算出
=
=1,由向量数量积坐标表示及二倍角的余弦公式可算出
的数量积为
,再由数量积的定义可得
的的数量积为
,从而得出
=
,即可求出角C;(2)由三角形面积公式及已知条件可求出
,再由余弦定理和配凑法,可得到关于
的方程,再求出
.
试题解析:(1)由
,
知,
=
=1,
=
=
,
因为
的夹角是
,所以
=
=
,
所以
=
,又因为
,所以
=
.
(2)由(1)知,
=
,因为三角形ABC的面积
,
所以
=
=
,
所以
=6,
由余弦定理知,
=
=
,
解得
,
所以
=
.
考点:向量的数量积的定义及坐标表示;二倍角公式;三角形面积公式;余弦定理
练习册系列答案
相关题目