题目内容
| π |
| 2 |
| π |
| 3 |
| 4 |
| 5 |
分析:首先根据P2的横坐标为-
,求出cos(α+
)的值,然后根据同角三角函数的性质求出sin(α+
),最后根据cosα=cos[(α+
)-
]化简即可求出cosα.
| 4 |
| 5 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
解答:解:∵cos(α+
)=-
∴sin(α+
)=
∴cosα=cos[(α+
)-
]
=
cos(α+
) +
sin(α+
)
=
×(-
) +
×
=
;
故答案为
.
| π |
| 3 |
| 4 |
| 5 |
∴sin(α+
| π |
| 3 |
| 3 |
| 5 |
∴cosα=cos[(α+
| π |
| 3 |
| π |
| 3 |
=
| 1 |
| 2 |
| π |
| 3 |
| ||
| 2 |
| π |
| 3 |
=
| 1 |
| 2 |
| 4 |
| 5 |
| ||
| 2 |
| 3 |
| 5 |
=
3
| ||
| 10 |
故答案为
3
| ||
| 10 |
点评:本题考查单位圆与周期性,以及任意角的三角函数的定义及其应用.通过三角函数的转化来求角的余弦值.属于基础题.
练习册系列答案
相关题目