题目内容
已知数列{xn},{yn}满足x1=x2=1,y1=y2=2,并且
=λ
,
≥λ
(λ为非零参数,n=2,3,4,…).
(1)若x1,x3,x5成等比数列,求参数λ的值;
(2)当λ>0时,证明
≤
(n∈N*);当λ>1时,证明
+
+…+
<
(n∈N*).
| xn+1 |
| xn |
| xn |
| xn-1 |
| yn+1 |
| yn |
| yn |
| yn-1 |
(1)若x1,x3,x5成等比数列,求参数λ的值;
(2)当λ>0时,证明
| xn+1 |
| yn+1 |
| xn |
| yn |
| x1-y1 |
| x2-y2 |
| x2-y2 |
| x3-y3 |
| xn-yn |
| xn+1-yn+1 |
| λ |
| λ-1 |
(1)由已知x1=x2=1,且
=λ
∴x3=λ,同理可知x4=λ3,x5=λ6,若x1、x3、x5成等比数列,则x32=x1x5,即λ2=λ6.而λ≠0,解得λ=±1.
(2)证明:(Ⅰ)由已知λ>0,x1=x2=1及y1=y2=2,可得xn>0,yn>0.由不等式的性质,有
≥λ
≥λ 2
…≥
λ n-1
=λn-1;
另一方面,
=λ
=λ 2
…λ n-1
=λn-1.
因此,
≥λ n-1=
(n∈N*).故
≤
(n∈N*).
(Ⅱ)当λ>1时,由(Ⅰ)可知,yn>xn≥1(n∈N*).
又由(Ⅰ)
≤
(n∈N*),则
≥
,
从而
≥
(n∈N*).
∴
+
+…+
=
<
(n∈N*)
| x3 |
| x2 |
| x2 |
| x1 |
∴x3=λ,同理可知x4=λ3,x5=λ6,若x1、x3、x5成等比数列,则x32=x1x5,即λ2=λ6.而λ≠0,解得λ=±1.
(2)证明:(Ⅰ)由已知λ>0,x1=x2=1及y1=y2=2,可得xn>0,yn>0.由不等式的性质,有
| yn+1 |
| yn |
| yn |
| yn-1 |
| yn-1 |
| yn-2 |
λ n-1
| y2 |
| y1 |
另一方面,
| xn+1 |
| xn |
| xn |
| xn-1 |
| xn-1 |
| xn-2 |
| x2 |
| x1 |
因此,
| yn+1 |
| yn |
| xn+1 |
| xn |
| xn+1 |
| yn+1 |
| xn |
| yn |
(Ⅱ)当λ>1时,由(Ⅰ)可知,yn>xn≥1(n∈N*).
又由(Ⅰ)
| xn+1 |
| yn+1 |
| xn |
| yn |
| yn+1-xn+1 |
| xn+1 |
| yn-xn |
| xn |
从而
| yn+1-xn+1 |
| yn-xn |
| xn+1 |
| xn |
∴
| x1-y1 |
| x2-y2 |
| x2-y2 |
| x3-y3 |
| xn-yn |
| xn+1-yn+1 |
1-(
| ||
1-
|
| λ |
| λ-1 |
练习册系列答案
相关题目