题目内容

(2013•肇庆一模)已知Sn是数列{an}的前n项和,且a1=1,nan+1=2Sn(n∈N*)
(1)求a2,a3,a4的值;
(2)求数列{an}的通项an
(3)设数列{bn}满足bn=
2(n+2)an
,求数列{bn}的前n项和Tn
分析:(1)在nan+1=2Sn(n∈N*)中,分别令n=1、2、3即可求得a2,a3,a4的值;
(2)累乘法:n>1时,由nan+1=2Sn①,得(n-1)an=2Sn-1②,①-②化简得nan+1=(n+1)an,即
an+1
an
=
n+1
n
(n>1),则an=a2×
a3
a2
×
a4
a3
×…×
an
an-1
,由此可得an=n(n>1),注意验证a1
(3)裂项相消法:由(2)可求得bn=
2
(n+2)n
=
1
n
-
1
n+2
,各项按此规律展开即可求得Tn
解答:解:(1)由a1=1,nan+1=2Sn(n∈N*)得,a2=2a1=2,2a3=2S2,则a3=a1+a2=3,
由3a4=2S3=2(a1+a2+a3),得a4=4;
(2)当n>1时,由nan+1=2Sn①,得(n-1)an=2Sn-1②,
①-②得nan+1-(n-1)an=2(Sn-Sn-1),化简得nan+1=(n+1)an
an+1
an
=
n+1
n
(n>1).
∴a2=2,
a3
a2
=
3
2
,…,
an
an-1
=
n
n-1

以上(n-1)个式子相乘得an=2×
3
2
×…×
n
n-1
=n
(n>1),
又a1=1,∴an=n(n∈N*)
(3)∵bn=
2
(n+2)an
=
2
(n+2)n
=
1
n
-
1
n+2

Tn=
1
1
-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n-2
-
1
n
+
1
n-1
-
1
n+1
+
1
n
-
1
n+2

=1+
1
2
-
1
n+1
-
1
n+2
=
3
2
-
2n+3
(n+1)(n+2)
点评:本题考查由数列递推式求通项公式、数列求和等知识,若数列{an}满足:
an+1
an
=f(n),则往往利用累乘法求an;若{an}为等差数列,公差d≠0,则数列{
1
anan+1
}的前n项和用裂项相消法求解,其中
1
anan+1
=
1
d
(
1
an
-
1
an+1
)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网