题目内容
(2013•肇庆一模)已知Sn是数列{an}的前n项和,且a1=1,nan+1=2Sn(n∈N*).
(1)求a2,a3,a4的值;
(2)求数列{an}的通项an;
(3)设数列{bn}满足bn=
,求数列{bn}的前n项和Tn.
(1)求a2,a3,a4的值;
(2)求数列{an}的通项an;
(3)设数列{bn}满足bn=
| 2 | (n+2)an |
分析:(1)在nan+1=2Sn(n∈N*)中,分别令n=1、2、3即可求得a2,a3,a4的值;
(2)累乘法:n>1时,由nan+1=2Sn①,得(n-1)an=2Sn-1②,①-②化简得nan+1=(n+1)an,即
=
(n>1),则an=a2×
×
×…×
,由此可得an=n(n>1),注意验证a1;
(3)裂项相消法:由(2)可求得bn=
=
-
,各项按此规律展开即可求得Tn;
(2)累乘法:n>1时,由nan+1=2Sn①,得(n-1)an=2Sn-1②,①-②化简得nan+1=(n+1)an,即
| an+1 |
| an |
| n+1 |
| n |
| a3 |
| a2 |
| a4 |
| a3 |
| an |
| an-1 |
(3)裂项相消法:由(2)可求得bn=
| 2 |
| (n+2)n |
| 1 |
| n |
| 1 |
| n+2 |
解答:解:(1)由a1=1,nan+1=2Sn(n∈N*)得,a2=2a1=2,2a3=2S2,则a3=a1+a2=3,
由3a4=2S3=2(a1+a2+a3),得a4=4;
(2)当n>1时,由nan+1=2Sn①,得(n-1)an=2Sn-1②,
①-②得nan+1-(n-1)an=2(Sn-Sn-1),化简得nan+1=(n+1)an,
∴
=
(n>1).
∴a2=2,
=
,…,
=
,
以上(n-1)个式子相乘得an=2×
×…×
=n(n>1),
又a1=1,∴an=n(n∈N*);
(3)∵bn=
=
=
-
,
∴Tn=
-
+
-
+
-
+…+
-
+
-
+
-
=1+
-
-
=
-
.
由3a4=2S3=2(a1+a2+a3),得a4=4;
(2)当n>1时,由nan+1=2Sn①,得(n-1)an=2Sn-1②,
①-②得nan+1-(n-1)an=2(Sn-Sn-1),化简得nan+1=(n+1)an,
∴
| an+1 |
| an |
| n+1 |
| n |
∴a2=2,
| a3 |
| a2 |
| 3 |
| 2 |
| an |
| an-1 |
| n |
| n-1 |
以上(n-1)个式子相乘得an=2×
| 3 |
| 2 |
| n |
| n-1 |
又a1=1,∴an=n(n∈N*);
(3)∵bn=
| 2 |
| (n+2)an |
| 2 |
| (n+2)n |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn=
| 1 |
| 1 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-2 |
| 1 |
| n |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=1+
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 2 |
| 2n+3 |
| (n+1)(n+2) |
点评:本题考查由数列递推式求通项公式、数列求和等知识,若数列{an}满足:
=f(n),则往往利用累乘法求an;若{an}为等差数列,公差d≠0,则数列{
}的前n项和用裂项相消法求解,其中
=
(
-
).
| an+1 |
| an |
| 1 |
| anan+1 |
| 1 |
| anan+1 |
| 1 |
| d |
| 1 |
| an |
| 1 |
| an+1 |
练习册系列答案
相关题目