题目内容

设偶函数f(x)在(0,+∞)上为减函数,且f(2)=0,则不等式
f(x)+f(-x)
x
>0
的解集为(  )
A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(0,2)
∵f(x)是偶函数
∴f(-x)=f(x)
不等式
f(x)+f(-x)
x
>0
,即
2f(x)
x
>0

也就是xf(x)>0
①当x>0时,有f(x)>0
∵f(x)在(0,+∞)上为减函数,且f(2)=0
∴f(x)>0即f(x)>f(2),得0<x<2;
②当x<0时,有f(x)<0
∵-x>0,f(x)=f(-x)<f(2),
∴-x>2?x<-2
综上所述,原不等式的解集为:(-∞,-2)∪(0,2)
故选B
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网