题目内容
若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值为________
9
解:∵f′(x)=12x2-2ax-2b
又因为在x=1处有极值
∴a+b=6
∵a>0,b>0
∴ab≤(a+b 2 )2=9
当且仅当a=b=3时取等号
所以ab的最大值等于9
解:∵f′(x)=12x2-2ax-2b
又因为在x=1处有极值
∴a+b=6
∵a>0,b>0
∴ab≤(a+b 2 )2=9
当且仅当a=b=3时取等号
所以ab的最大值等于9
练习册系列答案
相关题目
若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于( )
| A、2 | B、3 | C、6 | D、9 |