题目内容
如果5个数x1,x2,x3,x4,x5的方差为7,那么3x1+2,3x2+2,3x3+2,3x4+2,3x5+2,这5个数的方差是
63
63
.分析:直接根据方差公式S2=
[(x1-
)2+(x2-
)2+…+(xn-
)2]进行求解即可.
| 1 |
| n |
. |
| x |
. |
| x |
. |
| x |
解答:解:∵数据x1,x2,x3,x4,x5的方差是7,
∴
[(x1-
)2+(x2-
)2+[(x3-
)2+(x4-
)2+(x5-
)2]=7①;
方差=
[(3x1+2-3
-2)2+(3x2+2-3
-2)2+(3x3+2-3
-2)2+(3x4+2-3
-2)2+(3x5+2-3
-2)2]
=
[9(x1-
)2+9(x2-
)2+9(x3-
)2+9(x4-
)2+9(x5-
)2]
=
[(x1-
)2+(x2-
)2+[(x3-
)2+(x4-
)2+(x5-
)2]②
把①代入②得,方差是:7×9=63.
故答案为:63.
∴
| 1 |
| 5 |
. |
| x |
. |
| x |
. |
| x |
. |
| x |
. |
| x |
方差=
| 1 |
| 5 |
. |
| x |
. |
| x |
. |
| x |
. |
| x |
. |
| x |
=
| 1 |
| 5 |
. |
| x |
. |
| x |
. |
| x |
. |
| x |
. |
| x |
=
| 9 |
| 5 |
. |
| x |
. |
| x |
. |
| x |
. |
| x |
. |
| x |
把①代入②得,方差是:7×9=63.
故答案为:63.
点评:本题考查了平均数的计算公式和方差的定义:一般地设n个数据,x1,x2,…xn的平均数为
,则方差S2=
[(x1-
)2+(x2-
)2+…+(xn-
)2],同时考查了计算能力,属于基础题.
. |
| x |
| 1 |
| n |
. |
| x |
. |
| x |
. |
| x |
练习册系列答案
相关题目