搜索
题目内容
设ω>0,若函数f(x)=2sinωx在
上单调递增,则ω的取值范围是________.
试题答案
相关练习册答案
答案:
解析:
(不写ω>0不给分)
练习册系列答案
1加1阅读好卷系列答案
专项复习训练系列答案
初中语文教与学阅读系列答案
阅读快车系列答案
完形填空与阅读理解周秘计划系列答案
英语阅读理解150篇系列答案
奔腾英语系列答案
标准阅读系列答案
53English系列答案
考纲强化阅读系列答案
相关题目
已知函数f(x)=mx
3
+3x
2
-3x,m∈R.
(Ⅰ)若函数f(x)在x=-1处取得极值,试求m的值,并求f(x)在点M(1,f(1))处的切线方程;
(Ⅱ)设m<0,若函数f(x)在(2,+∞)上存在单调递增区间,求m的取值范围.
已知a,b是实数,函数f(x)=x
3
+ax,g(x)=x
2
+bx,f′(x)和g′(x)是f(x),g(x)的导函数,若f′(x)g′(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致
(1)设a>0,若函数f(x)和g(x)在区间[-1,+∞)上单调性一致,求实数b的取值范围;
(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a-b|的最大值.
已知函数f(x)=|x|•(x+a)(a∈R)是奇函数.
(Ⅰ)求a的值;
(Ⅱ)设b>0,若函数f(x)在区间[-b,b]上最大值与最小值的差为b,求b的值.
已知函数f(x)=mx
3
+3x
2
-3x,m∈R.
(1)若函数f(x)在x=-1处取得极值,求m的值;
(2)设m<0,若函数f(x)在(2,+∞)上存在单调递增区间,求m的取值范围.
已知函数f(x)=x|x-2m|,常数m∈R.
(1)设m=0.求证:函数f(x)递增;
(2)设m=-1.求关于x的方程f(f(x))=0的解的个数;
(3)设m>0.若函数f(x)在区间[0,1]上的最大值为m
2
,求正实数m的取值范围.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案