题目内容

【题目】已知椭圆的离心率为,其左焦点与抛物线的焦点重合.

(1)求椭圆的方程;

(2)过动点的直线交轴于点,交椭圆于点在第一象限,,过点轴的垂线交椭圆于点,连接并延长交椭圆于另一点.设直线的斜率分别为,证明:为定值.

【答案】(1)(2)见证明

【解析】

(1)先由抛物线方程求得抛物线的焦点,可得c=1,再由椭圆的离心率可求得a,再由a,b,c的关系可以求出b,然后得到椭圆的方程.

(2)由直线过x轴上定点,所以设出直线的横截式方程,先计算B点坐标,又因为,所以根据线段的比例关系可以得到A的坐标,再由对称关系得到D点坐标,由两点式计算直线DT的斜率,然后求比值.

(1)由题意可知题意的左焦点为,因为离心率为

所以

所以题意的方程为.

(2)设直线的方程为,(),则

,可求得

因为

所以,且

所以

所以为定值.

练习册系列答案
相关题目

【题目】中,角 所对的边分别为 ,且.

(Ⅰ)求角的大小;

(Ⅱ)已知 的面积为,求的周长.

【答案】(Ⅰ).(Ⅱ).

【解析】试题分析】(I)利用正弦定理和三角形内角和定理化简已知,可求得的值,进而求得的大小.(II)利用余弦定理和三角形的面积公式列方程组求解的的值,进而求得三角形周长.

试题解析】

(Ⅰ)由及正弦定理得,

,∴

又∵,∴.

又∵,∴.

(Ⅱ)由 ,根据余弦定理得

的面积为,得.

所以 ,得

所以周长.

型】解答
束】
18

【题目】为促进农业发展,加快农村建设,某地政府扶持兴建了一批“超级蔬菜大棚”.为了解大棚的面积与年利润之间的关系,随机抽取了其中的7个大棚,并对当年的利润进行统计整理后得到了如下数据对比表:

大棚面积(亩)

4.5

5.0

5.5

6.0

6.5

7.0

7.5

年利润(万元)

6

7

7.4

8.1

8.9

9.6

11.1

由所给数据的散点图可以看出,各样本点都分布在一条直线附近,并且有很强的线性相关关系.

(Ⅰ)求关于的线性回归方程;

(Ⅱ)小明家的“超级蔬菜大棚”面积为8.0亩,估计小明家的大棚当年的利润为多少;

(Ⅲ)另外调查了近5年的不同蔬菜亩平均利润(单位:万元),其中无丝豆为:1.5,1.7,2.1,2.2,2.5;彩椒为:1.8,1.9,1.9,2.2,2.2,请分析种植哪种蔬菜比较好?

参考数据: .

参考公式: .

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网