题目内容
【题目】如图1,在梯形
中,
,点
在线段
上,且满足
,将
沿
翻折,使翻折后的二面角
的余弦值为
,如图2.
![]()
(1)求证:
;
(2)求直线
与平面
所成角的正弦值.
【答案】(1)证明见解析;(2)![]()
【解析】
(1)先根据菱形的性质证得线线垂直,再根据线面垂直的判定定理证得线面垂直,最后根据线面垂直的性质定理证得线线垂直;
(2)先通过作辅助线找到所求的线面角及二面角
的平面角,再通过解三角形求相关线段的长度,即可得线面角的正弦值,也可根据垂直关系建立空间直角坐标系进行求解.
解:(1)在梯形
中,
连接
,
记
.
由题意易得
,
所以四边形
是平行四边形,
又
,
所以四边形
是菱形,
所以
,
所以
.
又
,
平面
,
所以
平面
,又
平面
,
所以
.
(2)因为
平面
平面
,
所以平面
平面
.
过点
作
交
的延长线于点
,
如图所示,
因为平面
平面
,
所以
平面
.
延长
交于点
,连接
,
则
为直线
与平面
所成的角.
由
,
得二面角
的平面角为
,
则
,
所以
.
由四边形
是菱形,
且易得
,
得
为等边三角形,
所以
,
所以
.
在
中,易知
为
的中位线,
,
所以
,
所以
,
即直线
与平面
所成角的正弦值为
.
![]()
【题目】某班级共有50名同学(男女各占一半),为弘扬传统文化,班委组织了“古诗词男女对抗赛”,将同学随机分成25组,每组男女同学各一名,每名同学均回答同样的五个不同问题,答对一题得一分,答错或不答得零分,总分5分为满分.最后25组同学得分如下表:
组别号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
男同学得分 | 5 | 4 | 5 | 5 | 4 | 5 | 5 | 4 | 4 | 4 | 5 | 5 | 4 |
女同学得分 | 4 | 3 | 4 | 5 | 5 | 5 | 4 | 5 | 5 | 5 | 5 | 3 | 5 |
分差 | 1 | 1 | 1 | 0 | -1 | 0 | 1 | -1 | -1 | -1 | 0 | 2 | -1 |
组别号 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |
男同学得分 | 4 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 4 | 3 | 3 | |
女同学得分 | 5 | 3 | 4 | 5 | 4 | 3 | 5 | 5 | 3 | 4 | 5 | 5 | |
分差 | -1 | 0 | 0 | -1 | 0 | 1 | 0 | 0 | 2 | 0 | -2 | -2 | |
(I)完成
列联表,并判断是否有90%的把握认为“该次对抗赛是否得满分”与“同学性别”有关;
(Ⅱ)某课题研究小组假设各组男女同学分差服从正态分布
,首先根据前20组男女同学的分差确定
和
,然后根据后面5组同学的分差来检验模型,检验方法是:记后面5组男女同学分差与
的差的绝对值分别为
,若出现下列两种情况之一,则不接受该模型,否则接受该模型.①存在
;②记满足
的i的个数为k,在服从正态分布
的总体(个体数无穷大)中任意取5个个体,其中落在区间
内的个体数大于或等于k的概率为P,
.
试问该课题研究小组是否会接受该模型.
| 0.10 | 0.05 | 0.010 |
| 2.706 | 3.841 | 6.635 |
参考公式和数据:![]()
,
;若
,有
,
.