题目内容
设sinα=
(
<a<π),tan(π-β)=
,则tan(α-2β)的值为______.
| 3 |
| 5 |
| π |
| 2 |
| 1 |
| 2 |
∵sinα=
,
<α<π,
∴cosα=-
=-
,tanα=
=-
,
又tan(π-β)=-tanβ=
,∴tanβ=-
,
∴tan2β=
=-
=-
,
则tan(α-2β)=
=
=
.
故答案为:
| 3 |
| 5 |
| π |
| 2 |
∴cosα=-
| 1-sin2α |
| 4 |
| 5 |
| sinα |
| cosα |
| 3 |
| 4 |
又tan(π-β)=-tanβ=
| 1 |
| 2 |
| 1 |
| 2 |
∴tan2β=
| 2tanβ |
| 1-tan2β |
2×
| ||
1-
|
| 4 |
| 3 |
则tan(α-2β)=
| tanα-tan2β |
| 1+tanαtan2β |
-
| ||||
1+
|
| 7 |
| 24 |
故答案为:
| 7 |
| 24 |
练习册系列答案
相关题目
设sinα=
,α∈(
,π),则tanα的值为( )
| 3 |
| 5 |
| π |
| 2 |
A、
| ||
B、-
| ||
C、
| ||
D、-
|