题目内容
已知锐角△ABC中的三个内角分别为A,B,C.
(1)设
•
=
•
,求证:△ABC是等腰三角形;
(2)设向量
=(2sinC,-
),
=(cos2C,2cos2
-1),且
∥
,若sinA=
,求sin(
-B)的值.
(1)设
| BC |
| CA |
| CA |
| AB |
| BC |
(2)设向量
| s |
| 3 |
| t |
| C |
| 2 |
| s |
| t |
| 2 |
| 3 |
| π |
| 3 |
(1)因为
•
=
•
,所以
•(
-
)=0,又
+
+
=0,所以
=-(
+
),所以-(
+
)•(
-
)=0,所以
2-
2=0,(4分)
所以|
|2=|
|2,即|
|=|
|,故△ABC为等腰三角形.(6分)
(2)∵
∥
,∴2sinC(2cos2
-1)=-
cos2C
∴sin2C=-
cos2C,即tan2C=-
,∵C为锐角,∴2C∈(0,π),
∴2C=
,∴C=
.(8分)
∴A=
-B,∴sin(
-B)=sin[(
-B)-
]=sin(A-
).(10分)
又sinA=
,且A为锐角,∴cosA=
,(12分)
∴sin(
-B)=sin(A-
)=sinAcos
-cosAsin
=
.(14分)
| BC |
| CA |
| CA |
| AB |
| CA |
| BC |
| AB |
| AB |
| BC |
| CA |
| CA |
| AB |
| BC |
| AB |
| BC |
| BC |
| AB |
| AB |
| BC |
所以|
| AB |
| BC |
| AB |
| BC |
(2)∵
| s |
| t |
| C |
| 2 |
| 3 |
∴sin2C=-
| 3 |
| 3 |
∴2C=
| 2π |
| 3 |
| π |
| 3 |
∴A=
| 2π |
| 3 |
| π |
| 3 |
| 2π |
| 3 |
| π |
| 3 |
| π |
| 3 |
又sinA=
| 2 |
| 3 |
| ||
| 3 |
∴sin(
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
2-
| ||
| 6 |
练习册系列答案
相关题目