题目内容
已知f(x+2)=x2+2x-3,函f(x)的表达式是
x2-2x-3
x2-2x-3
.分析:令t=x+2换元,将x=t-2代入f(x+2)=x2+2x-3即可.
解答:解:令t=x+2,则x=t-2代入f(x+2)=x2+2x-3得:
f(t)=(t-2)2+2(t-2)-3
=t2-2t-3.
∴f(x)=x2-2x-3.
故答案为:x2-2x-3.
f(t)=(t-2)2+2(t-2)-3
=t2-2t-3.
∴f(x)=x2-2x-3.
故答案为:x2-2x-3.
点评:本题考查换元法求函数解析式,考查转化与运算能力,属于基础题.
练习册系列答案
相关题目