题目内容
对于函数f(x)=x2-2|x|,
(1)判断其奇偶性,并指出图象的对称性;
(2)画此函数的图象,并指出其单调区间.
解:(1)
∵f(-x)=(-x)2-2|-x|=x2-2|x|=f(x),
∴f(x)=x2-2|x|为偶函数,
∴函数f(x)=x2-2|x|的图象关于y轴对称;
(2)图象如图所示,
∴函数f(x)=x2-2|x|的单调增区间:(-1,0),(1,+∞);
单调减区间:(-∞,-1),(0,1).
分析:(1)利用奇偶函数的定义判断即可;
(2)画出此函数的图象,即可指出其单调区间.
点评:本题考查函数奇偶性的判断,着重考查奇偶性的概念及应用,易错点在于单调区间的写法.
∴f(x)=x2-2|x|为偶函数,
∴函数f(x)=x2-2|x|的图象关于y轴对称;
(2)图象如图所示,
∴函数f(x)=x2-2|x|的单调增区间:(-1,0),(1,+∞);
单调减区间:(-∞,-1),(0,1).
分析:(1)利用奇偶函数的定义判断即可;
(2)画出此函数的图象,即可指出其单调区间.
点评:本题考查函数奇偶性的判断,着重考查奇偶性的概念及应用,易错点在于单调区间的写法.
练习册系列答案
相关题目
设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是( )
| A、[-5,5] | ||||||||
B、[-
| ||||||||
C、[-
| ||||||||
D、[-
|