题目内容
已知等比数列 中,,,则该数列的公比 为( )
A.1 B. C.2 D.
平面直角坐标系中,已知椭圆:的离心率为,且点(,)在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆:,为椭圆上任意一点,过点的直线交椭圆于两点,射线交椭圆于点.
(i)求的值;
(ii)求面积的最大值.
设奇函数在上为增函数,且,则不等式解集为( )
A. B.
C. D.
如图,直线y=m与抛物线y2=4x交于点A,与圆(x-1)2+y2=4的实线部分交于点B,F为抛物线的焦点,则三角形ABF的周长的取值范围是( )
A.(2,4) B.(4,6) C.[2,4] D.[4,6]
某批发站全年分批购入每台价值为3000 元的电脑共4000台,每批都购入台,且每批均需付运费360元,储存电脑全年所付保管费与每批购入电脑的总价值(不含运费)成正比,若每批购入400台,则全年需用去运费和保管费共43600元,现在全年只有24000元资金可以用于支付这笔费用(运费和保管费),请问能否恰当安排进货数量使资金够用?写出你的结论,并说明理由.
已知函数.
(1)若,试求函数的最小值;
(2)对于任意的,不等式 成立,试求 的取值范围.
已知△ABC的三个顶点,其外接圆为圆H.
(1)求圆H的方程;
(2)若直线l过点C,且被圆H截得的弦长为2,求直线l的方程;
(3)对于线段BH上的任意一点P,若在以C为圆心的圆上都存在不同的两点M、N,使得点M是线段PN的中点,求圆C的半径r的取值范围.
直线和垂直,则实数的值为( )
A. B. C. D.
命题“,”的否定是( )
A.,
B.,
C.,
D.,