题目内容
已知P(x,4)是角α终边上一点,且tanα=-
,则x=
| 2 | 5 |
-10
-10
.分析:由任意角的三角函数的定义可得tanα=
=-
,解得x的值即为所求.
| 4 |
| x |
| 2 |
| 5 |
解答:解:P(x,4)是角α终边上一点,且tanα=-
,则由任意角的三角函数的定义可得
tanα=
=-
,解得 x=-10,
故答案为-10.
| 2 |
| 5 |
tanα=
| 4 |
| x |
| 2 |
| 5 |
故答案为-10.
点评:本题主要考查任意角的三角函数的定义,
练习册系列答案
相关题目