题目内容

若非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},则能使A⊆A∩B成立的所有a的集合是(  )
A.{a|1≤a≤9}B.{a|6≤a≤9}C.{a|a≤9}D.∅
由于B={x|3≤x≤22},
∵A⊆A∩B,∴A⊆B,
3a-5≤22
2a+1≥3

解得:{a|1≤a≤9},
又A为非空集合,故有2a+1≤3a-5,解得a≥6
综上得,使A⊆A∩B成立的a的集合是:{a|6≤a≤9}.
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网