题目内容
如图所示,双曲线的中心在坐标原点,焦点在x轴上,F1,F2分别为左、右焦点,双曲线的左支上有一点P,∠F1PF2=
,且△PF1F2的面积为2
,又双曲线的离心率为2,求该双曲线的方程.
解:设双曲线方程为:
﹣
=1(a>0,b>0),
F1(﹣c,0),F2(c,0),P(x0,y0).
在△PF1F2中,由余弦定理,得:
|F1F2|2=|PF1|2+|PF2|2﹣2
|PF1|
|PF2|
cos
=(|PF1|﹣|PF2|)2+|PF1|
|PF2|.
即4c2=4a2+|PF1|
|PF2|.
又∵
=2
.
∴
|PF1|
|PF2|
sin
=2
.
∴|PF1|
|PF2|=8.
∴4c2=4a2+8,即b2=2.
又∵e=
=2,
∴a2=
.
∴双曲线的方程为:
﹣
=1.
F1(﹣c,0),F2(c,0),P(x0,y0).
在△PF1F2中,由余弦定理,得:
|F1F2|2=|PF1|2+|PF2|2﹣2
即4c2=4a2+|PF1|
又∵
∴
∴|PF1|
∴4c2=4a2+8,即b2=2.
又∵e=
∴a2=
∴双曲线的方程为:
练习册系列答案
相关题目
| e1+e2 |
| e1e2 |
| A、r1+r2 |
| B、r1和r2中的较大者 |
| C、r1和r2中的较小者 |
| D、|r1-r2| |