题目内容
【题目】设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13. (Ⅰ)求{an}、{bn}的通项公式;
(Ⅱ)求数列
的前n项和Sn .
【答案】解:(Ⅰ)设{an}的公差为d,{bn}的公比为q,则依题意有q>0且
解得d=2,q=2.
所以an=1+(n﹣1)d=2n﹣1,bn=qn﹣1=2n﹣1 .
(Ⅱ)
,
,①
Sn=
,②
① ﹣②得
Sn=1+2(
+
+…+
)﹣
,
则
=
=
=
.
【解析】(Ⅰ)设{an}的公差为d,{bn}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{an}、{bn}的通项公式.(Ⅱ)数列
的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和Sn .
【考点精析】本题主要考查了等差数列的通项公式(及其变式)和等比数列的通项公式(及其变式)的相关知识点,需要掌握通项公式:
或
;通项公式:
才能正确解答此题.
【题目】某学校为了解该校高三年级学生数学科学习情况,对广一模考试数学成绩进行分析,从中抽取了n 名学生的成绩作为样本进行统计(该校全体学生的成绩均在[60,140),按照[60,70),[70,80),[80,90),[90,100),[100,110),[110,120),[120,130),[130,140)的分组作出频率分布直方图如图1所示,样本中分数在[70,90)内的所有数据的茎叶图如图2所示. ![]()
根据上级统计划出预录分数线,有下列分数与可能被录取院校层次对照表为表( c ).
分数 | [50,85] | [85,110] | [110,150] |
可能被录取院校层次 | 专科 | 本科 | 重本 |
(1)求n和频率分布直方图中的x,y的值;
(2)根据样本估计总体的思想,以事件发生的频率作为概率,若在该校高三年级学生中任取3 人,求至少有一人是可能录取为重本层次院校的概率;
(3)在选取的样本中,从可能录取为重本和专科两个层次的学生中随机抽取3 名学生进行调研,用ξ表示所抽取的3 名学生中为重本的人数,求随机变量ξ的分布列和数学期望.