题目内容

已知向量
a
=(
3
 , cos2ωx) ,  
b
=(sin2ωx ,  1) ,  (ω>0)
,令f(x)=
a
b
,且f(x)的周期为π.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若x∈[0,
π
2
]
时f(x)+m≤3,求实数m的取值范围.
(I)∵向量
a
=(
3
,cos2ωx),
b
=(sin2ωx,1),(ω>0)
f(x)=
a
b
=
3
sin2ωx+cos2ωx=2sin(2ωx+
π
6

∵函数的周期T=
=π,∴ω=1
即函数f(x)的解析式是f(x)=2sin(2x+
π
6
);
(II)当x∈[0,
π
2
]
时,2x+
π
6
∈[
π
6
6
]
∴-
1
2
≤sin(2ωx+
π
6
)≤1
因此,若x∈[0,
π
2
]
时,f(x)∈[-1,2]
∴f(x)+m≤3恒成立,即2+m≤3,解之得m≤1
即实数m的取值范围是(-∞,1].
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网