题目内容
已知函数f(x)=x2-|x|,则不等式f(log3
)<2的解为
| 1 |
| x+1 |
-
<x<8
| 8 |
| 9 |
-
<x<8
.| 8 |
| 9 |
分析:由f(x)=x2-|x|,令t=log3
,则f(log3
)=f(t)=t2-|t|<2,从而可得-2<t<2,即-2<log3
<2且,
>0,解不等式可求
| 1 |
| x+1 |
| 1 |
| x+1 |
| 1 |
| x+1 |
| 1 |
| 1+x |
解答:解:∵f(x)=x2-|x|
令t=log3
∴f(log3
)=f(t)=t2-|t|<2
∴|t|<2,∴-2<t<2
即-2<log3
<2且
>0
解不等式可得,-
<x<8
故答案为:-
<x<8
令t=log3
| 1 |
| x+1 |
∴f(log3
| 1 |
| x+1 |
∴|t|<2,∴-2<t<2
即-2<log3
| 1 |
| x+1 |
| 1 |
| 1+x |
解不等式可得,-
| 8 |
| 9 |
故答案为:-
| 8 |
| 9 |
点评:本题主要考查了二次函数与绝对值、对数不等式的解法,解题的关键是由f(log3
)<2得-2<log3
<2且
>0
| 1 |
| x+1 |
| 1 |
| x+1 |
| 1 |
| 1+x |
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|