题目内容
数列{an}满足a1=1,an+1=
|
(1)求a2,a3,a4.
(2)求证数列{bn}是以
| 1 |
| 2 |
(3)设(
| 3 |
| 4 |
分析:(1)把n=1,2,3,4分别代入递推公式可得
(2)要证数列{bn}为等比数列?
=q≠0,而
=
,利用已知的递推关系代入可证.
(3)结合(2)可得cn=n•(
)n,适合用“乘公比错位相减”求和
(2)要证数列{bn}为等比数列?
| bn |
| bn-1 |
| bn+1 |
| bn |
| a2n+2-2 |
| a2n-2 |
(3)结合(2)可得cn=n•(
| 2 |
| 3 |
解答:解:(1)当a2=
,a3=-
,a4=
,
(2)
=
=
=
=
=
又b1=a2-2=-
,∴数列{bn}是公等比为
的等比数列,且bn=(-
)×(
)n-1=-(
)n
(3)由(2)得(
)n•Cn=n•(
)n,∴Cn=n(
)n.
令Sn=C1+C2++Cn=
+2×(
)2+3×(
)3++n×(
)n.①
∴
Sn=(
)2+2×(
)3++(n-1)×(
)n+n×(
)n+1=(
)-n(
)n+1=2[1-(
)n]-n(
)n+1
∴Sn=6[1-(
)n]-3n(
)n+1=6-(
)n(6+2n)
| 3 |
| 2 |
| 5 |
| 2 |
| 7 |
| 4 |
(2)
| bn+1 |
| bn |
| a2n+2-2 |
| a2n-2 |
| ||
| a2n-2 |
| ||
| a2n-2 |
| ||
| a2n-2 |
| 1 |
| 2 |
又b1=a2-2=-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(3)由(2)得(
| 3 |
| 4 |
| 1 |
| 2 |
| 2 |
| 3 |
令Sn=C1+C2++Cn=
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
∴
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 2 |
| ||||
1-
|
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
∴Sn=6[1-(
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
点评:本题考查了数列的递推公式的运用、利用定义法证明等比数列:要证数列{bn}为等比数列?
=q≠0,数列求和的“乘公比错位相减”方法的运用.
| bn |
| bn-1 |
练习册系列答案
相关题目