题目内容
设△ABC的三边BC=4pq,CA=3p2+q2,AB=3p2+2pq-q2,求∠B,并证∠B为∠A及∠C的等差中项.
由余弦定理可得:
cosB=
=
=
=
,
∴∠B=60°,
∵∠C-∠B=(180°-∠A-∠B)-∠B=60°-∠A
=∠B-∠A,
?∴∠B是∠A与∠C的等差中项.
cosB=
| AB2+BC2-CA2 |
| 2AB•BC |
| (3p2+2pq-q2) 2+(4pq)2-(3p2+q2) 2 |
| 2(3p2+2pq-q2)• 4pq |
=
| 4pq(3p2+2pq-q2) |
| 8pq(3p2+2pq-q2) |
| 1 |
| 2 |
∴∠B=60°,
∵∠C-∠B=(180°-∠A-∠B)-∠B=60°-∠A
=∠B-∠A,
?∴∠B是∠A与∠C的等差中项.
练习册系列答案
相关题目